首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222328篇
  免费   21154篇
  国内免费   9872篇
电工技术   15059篇
技术理论   30篇
综合类   22989篇
化学工业   27053篇
金属工艺   9679篇
机械仪表   11892篇
建筑科学   31374篇
矿业工程   12795篇
能源动力   8291篇
轻工业   16002篇
水利工程   11056篇
石油天然气   11897篇
武器工业   3319篇
无线电   14724篇
一般工业技术   16709篇
冶金工业   11401篇
原子能技术   1786篇
自动化技术   27298篇
  2024年   472篇
  2023年   2861篇
  2022年   5245篇
  2021年   7457篇
  2020年   7080篇
  2019年   5374篇
  2018年   5059篇
  2017年   6289篇
  2016年   7863篇
  2015年   8548篇
  2014年   15504篇
  2013年   13513篇
  2012年   16304篇
  2011年   17990篇
  2010年   13220篇
  2009年   13489篇
  2008年   12327篇
  2007年   14992篇
  2006年   13599篇
  2005年   11823篇
  2004年   9862篇
  2003年   8577篇
  2002年   7003篇
  2001年   5748篇
  2000年   4803篇
  1999年   3741篇
  1998年   2633篇
  1997年   2288篇
  1996年   1908篇
  1995年   1623篇
  1994年   1374篇
  1993年   980篇
  1992年   782篇
  1991年   554篇
  1990年   484篇
  1989年   445篇
  1988年   247篇
  1987年   191篇
  1986年   163篇
  1985年   191篇
  1984年   137篇
  1983年   116篇
  1982年   64篇
  1981年   76篇
  1980年   84篇
  1979年   37篇
  1978年   22篇
  1977年   22篇
  1959年   31篇
  1956年   17篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
《Ceramics International》2022,48(22):33167-33176
This study evaluates the luminescence performance of fired clay bricks coated with SrAl2O4:Eu/Dy phosphor. To do so, SrAl2O4:Eu/Dy phosphor was first produced using the traditional solid-state reaction synthesis technique. The prepared phosphor was then used for coating fired clay bricks to analyze the luminescence performance via spectral analysis, decay characteristics, and microstructure of the bricks. The results reveal that excitation and emission spectra of the phosphor coated bricks range from 200 to 480 nm and 455 to 650 nm, respectively, suggesting that the phosphor coated bricks have the capacity of absorbing light with a wide range of wavelengths. The peak wavelength projected at 511 nm in the emission spectrum is achieved, which indicates 4f65 d1-4f7 transition of Europium (Eu2+). The repeated excitation and deexcitation of Eu2+ by using hole traps and trap levels offered by Dysprosium (Dy3+), exist between the ground and the excited state of Eu2+ leads to luminescent phenomenon. Moreover, the decay characteristics has revealed that phosphor coated bricks can emit light for a considerable amount of time (>8.5 min) upon the removal of the excitation source. The results reveal that phosphor coated bricks has the potential of increasing energy efficiency of residential and commercial buildings.  相似文献   
992.
Heat transportation is a novel prospective in many thermal processes and presents dynamic applications in industrial and thermal polymer processing optimization. The importance of heat transportation is noted in heat exchangers, production of crude oils, combustion, petroleum reservoirs turbine systems, thermal systems, porous media, modeling of resin transfer nuclear reactions etc. In view of such thermal applications the main objective here is to examine entropy in unsteady magnetohydrodynamic of Casson fluid flow. Radiation in addition to dissipation and ohmic heating are analyzed. Entropy is scrutinized employing thermodynamic second law. Characteristics of Soret and Dufour are also examined. Main objective here is to examine irreversibility. Dimensionless version of differential system is obtained through suitable variables. The obtained partial differential system is solved through numerical scheme (Finite difference method). Physical features of fluid flow, temperature, entropy optimization and concentration have been explained. Variations of parameters on drag force, Nusselt number and solutal transfer rate are graphically discussed. Higher fluid parameter leads to improve in velocity and entropy rate. Larger values of radiation parameter boost up thermal field. Entropy rate and velocity have reverse trend for magnetic field. An intensification for concentration is found through Soret number. Higher approximation of Reynold number enhances skin friction and velocity. Thermal transfer rate is augmented versus radiation and magnetic variables.  相似文献   
993.
In this paper, the energy, exergy, economic, environmental, steady-state, and process performance modeling/analysis of hybrid renewable energy (RE) based multigeneration system is presented. Beyond the design/performance analysis of an innovative hybrid RE system, this study is novel as it proposes a new methodology for determining the overall process energy and exergy efficiency of multigeneration systems. This novel method integrates EnergPLAN simulation program with EES and Matlab. It considers both the steady-state and the process performance of the modeled system on hourly timesteps in order to determine the overall efficiencies. Based on the proposed new method, it is observed that the overall process thermodynamic efficiencies of a hybrid renewable energy-based multigeneration system are different from its steady-state efficiencies. The overall energy and exergy efficiencies reduce from 81.01% and 52.52% (in steady-state condition) to 58.6% and 39.33% (when considering a one-year process performance). The integration of the hot water production with the multigeneration system enhanced the overall thermodynamic efficiencies in steady-state conditions. The Kalina system produces a total work output of 1171 kW with a thermal and exergy efficiency of 12.23% and 52% respectively while the wind turbine system produces 1297 kW of electricity in steady-state condition and it has the same thermal/exergy efficiency (72%). The economic analysis showed that the Levelized cost of electricity (LCOE) of the geothermal energy-based Kalina system is 0.0103 $/kWh. The greenhouse gas emission reduction analysis showed that the proposed system will save between 1,411,480 kg/yr and 3,518,760 kg/yr of greenhouse gases from being emitted into the atmosphere yearly. The multigeneration system designed in this study will produce electricity, hydrogen, hot water, cooling effect, and freshwater. Also, battery electric vehicle charging is integrated with process performance analysis of the multigeneration system.  相似文献   
994.
995.
The widespread use of fuel cell technology is hampered by the use of expensive and scarce platinum metal in electrodes which is required to facilitate the sluggish oxygen reduction reaction (ORR). In this work, a viable synthetic approach was developed to prepare iron-based sulfur and nitrogen dual doped porous carbon (Fe@SNDC) for use in ORR. Benzimidazole, a commercially available monomer, was used as a precursor for N doped carbon and calcined with potassium thiocyanate at different temperatures to tune the pore size, nitrogen content and different types of nitrogen functionality such as pyridinic, pyrrolic and graphitic. The Fe@SNDC–950 with high surface area, optimum N content of about 5 at% and high amount of pyridinic and graphitic N displayed an onset potential and half-wave potential of 0.98 and 0.83 V vs RHE, respectively, in 0.1 M KOH solution. The catalyst also exhibits similar oxygen reduction reaction performance compared to Pt/C (20 wt%) in acidic media. Furthermore, when compared to commercially available Pt/C (20 wt%), Fe@SNDC–950 showed enhanced durability over 6 h and poison tolerance in case of methanol crossover with the concentration up to 3.0 M in oxygen saturated alkaline electrolyte. Our study demonstrates that the presence of N and S along with Fe-N moieties synergistically served as ORR active sites while the high surface area with accessible pores allowed for efficient mass transfer and interaction of oxygen molecules to the active sites contributing to the ORR activity of the catalyst.  相似文献   
996.
Target design methodologies (DfX) were developed to cope with specific engineering design issues such as cost-effectiveness, manufacturability, assemblability, maintainability, among others. However, DfX methodologies are undergoing the lack of real integration with 3D CAD systems. Their principles are currently applied downstream of the 3D modelling by following the well-known rules available from the literature and engineers’ know-how (tacit internal knowledge).This paper provides a method to formalize complex DfX engineering knowledge into explicit knowledge that can be reused for Advanced Engineering Informatics to aid designers and engineers in developing mechanical products. This research work wants to define a general method (ontology) able to couple DfX design guidelines (engineering knowledge) with geometrical product features of a product 3D model (engineering parametric data). A common layer for all DfX methods (horizontal) and dedicated layers for each DfX method (vertical) allow creating the suitable ontology for the systematic collection of the DfX rules considering each target. Moreover, the proposed framework is the first step for developing (future work) a software tool to assist engineers and designers during product development (3D CAD modelling).A design for assembly (DfA) case study shows how to collect assembly rules in the given framework. It demonstrates the applicability of the CAD-integrated DfX system in the mechanical design of a jig-crane. Several benefits are recognized: (i) systematic collection of DfA rules for informatics development, (ii) identification of assembly issues in the product development process, and (iii) reduction of effort and time during the design review.  相似文献   
997.
The current trends in energy were described, the main of which is the use of alternative energy sources, especially hydrogen. The most common methods of hydrogen accumulation were proposed: accumulation of compressed gaseous hydrogen in high-pressure tanks; accumulation of liquid hydrogen in cryogenic tanks; storing hydrogen in a chemically bound state; accumulation of gaseous hydrogen in carriers with a high specific surface area. Based on the combination of advantages and disadvantages, the most promising methods of accumulation were selected: storage of liquid hydrogen and storage of hydrogen in carriers with a high specific surface area. The main requirement for materials for hydrogen storage by these methods was revealed – a high specific surface area. Prospects for the development of waste-free low-emission technologies due to the recycling of secondary raw materials and the development of low-temperature technologies for the synthesis of functional and structural materials were substantiated. The applicability of large-scale ash and slag waste from coal-fired thermal power plants as a raw material for obtaining materials by low-temperature technologies was shown. The traditional ways of using ash and slag waste as a raw material, active additive and filler in the production of cements were described. Modern technologies for the production of innovative materials with a unique set of properties were presented, namely carbon nanotubes, silica aerogel and geopolymer materials. The prospect of using geopolymer matrices as a precursor for the synthesis of a number of materials was described; the most promising type of materials was selected – geopolymer foams, which are mainly used as sorbents for purifying liquids and gases or accumulating target products, as well as heat-insulating materials. The possibility of obtaining products of any shape and size on the basis of geopolymer matrices without high-temperature processing was shown. The special efficiency of the development of the technology of porous granules and powders obtained from a geopolymer precursor using various methods was substantiated. The obtained granules can be used in the following hydrogen storage technologies: direct accumulation of hydrogen in porous granules; creation of insulating layers for liquid hydrogen storage units.  相似文献   
998.
寒区河道凌汛灾害河势“弯道效应”的量化评估十分重要。基于分形理论提出河道横断面-纵剖面-平面多维度河势分形维数计算方法及其物理机制,并探讨黄河内蒙古段不同维度河势演变分形特征及其与凌汛灾害的关联关系。结果表明,黄河内蒙古段不同维度河势均具有多尺度自相似分形特征,且具有多年记忆周期的长程相关性;冰坝(严重性冰塞)发生频次与河道主槽弯曲分形维数呈正相关指数型函数关系,与河相系数、深泓点高程和河段平均底坡分形维数负相关,与水深-面积分形维数正相关,总体表明冰坝灾害更易发生于主槽偏移摆动大、蜿蜒曲折、河湾发育程度高的宽浅型弯曲河道,研究成果可为凌汛期冰塞冰坝灾害易发河段诊断及预测提供重要理论依据。  相似文献   
999.
同步定位与建图技术(SLAM)一直是移动机器人领域比较热门的研究方向,它可以给机器人提供强大的环境感知能力;传统的依靠外部位置参考来定位的方法如果无法获得时,移动机器人需要即时定位自身位置来构建增量式地图,因此SLAM技术也就应运而生;对激光SLAM和视觉SLAM的研究现状及最新标志性成果进行了介绍,重点对以相机与激光雷达融合、相机与IMU融合、激光雷达与IMU融合为代表的多传感器融合SLAM技术展开讨论、系统地梳理了几种融合方式的优势与不足,同时介绍了该领域的研究热点语义SLAM,最后讨论了SLAM技术在该领域未来的发展方向以及存在的挑战。  相似文献   
1000.
A low-carbon energy transition is permeating many industrialized countries due to the overuse of fossil fuels and the climate change. Some countries stress the hydrogen energy in optimizing their energy structures. This article examines both the markets and the policies of the hydrogen industry in the World's Top 4 largest economies. To make the comparative analysis more logical, a novel conceptual model for energy transition -- the institution-economics-technology-behavior framework -- has been adopted to make a multi-dimensional discussion. The results show that: (1) From the perspective of strategic intention, developing hydrogen energy is conductive to the energy transition. (2) From the horizontal comparison, each country has its own advantages, however, the main driving factors are different. (3) From the vertical comparison, the hydrogen energy development in each country is still in the stage of quantitative change, and the inflection point of qualitative change has not been reached yet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号